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The authors consider the construction of an iterative numerical algorithm and 
analyze the influence of the location of the temperature sensor on the accuracy 
of solving the inverse problem. 

The wide practical use of various high-~emperature structural and thermal insulation 
composite materials requires development of new methods of determining their thermophysical 
characteristics. Intense heating in these materials causes complex multistage processes 
which can considerably change their structure, chemical composition, and physical properties, 
and have a substantial influence on the characteristics of the internal heat and mass trans- 
fer. The fact that these processes are interconnected in most cases precludes the use of 
traditional approaches to thermophysical measurements. One meets the problem of determining 
the characteristics of heat and mass transfer inside composite materials under conditions 
close to natural [i]. 

One promising approach to the solution of this problem is to conduct numerical experi- 
mental thermophysical investigations, based on the processing of experimental information by 
the methods of inverse coefficient problems [2]. In this case it is postulated that the 
structure of the heat- and mass-transfer model is given, but that some of the model coeffi- 
cients are known with low accuracy or are altogether unknown. One requires to use the re- 
sults of measurements of thermal boundary conditions and the temperature at internal points 
of the test body to determine the unknown coefficients of the mathematical model. 

To use the methods of coefficients of inverse heat- and mass-transfer problems in prac- 
tical thermophysical investigations, one must not only create efficient numerical algorithms 
to solve such problems, but also develop methods of planning thermophysicai experiments to 
be optimal in the conditions of their execution from the viewpoint of reliability of the 
results obtained. In particular, each specific experiment has the problem of planning the 
measurements, i.e., of determining the arrangement of temperature sensors in the specimen to 
achieve maximum accuracy in finding the specific coefficient of the inverse problem. 

The present paper considers the question of construction and analysis of the efficiency 
of a numerical algorithm for solving an inverse problem to recover the temperature dependence 
of the thermal conductivity of a composite material under conditions where it undergoes un- 
steady heating and breakdown. A~parametric mathematical model is used to investigate the 
accuracy indices of this algorithm as a function of the location of the temperature sensor. 
This approach and the results of modeling can be used to solve the problem of planning the 
thermophysical experiments. 

We now consider a nonlinear inverse coefficient problem for the system of equations 
describing unsteady heating and breakdown of a composite material [I]. When we have internal 
temperature measurements it is convenient to represent the original system as a boundary 
problem in heating of a multilayer plate with identical thermophysical characteristics of the 
layers and zero contact thermal resistances at the boundaries between them. 

In this case one must determine the temperature field T(x, T) and the dependence of the 
thermal conductivity %(T) from the conditions 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 45, No. 5, pp. 781-788, November, 
1983. Original article submitted January 2, 1983. 

0022-0841/83/4505-1275507.50 ~ 1984 Plenum Publishing Corporation 1275 



_ _  = _ _  [ OT, ] OTi c (T) OTi O ~, (T) - -  k (x, T )  - -  Q (x, T), 
Or Ox Ox j Ox 

X i < X < X i + l ,  0 < ' t ' . ~ & ' l : m ,  i =  1, N - - 1 ,  x l =  O, XN = b ,  

Zx (0, "0 ---- [1 (T), 0 " ~  I" ~ "l~rn , 

Ti-~ (xi, "0 = T~ (x .  "0, ) 
OT~-l(xi, "r) _ OTi(xi, x) I i = 2 ,  N - - l ,  

Ox Ox ' 

TN- 1 (b, T) = [N ('r), 0 < "r ~ Xra, 

T~ (x, 0) = ~ {x), ,i = l, N - -  1, 

(!) 

(2) 

(3) 

(4) 

(5) 

(6) 

x oxp 
j' ( 1 -- kr) poAz ~ --, dx, Ti ~ T~, 

m e { x , T ) =  :,~ 

O, Ti ~ Tr, 

Ti(xi,  "r)=[i(x),  O ~ ' ~ ' r m ,  i =  2, N - - l ,  

(7) 

(8) 

where 

k(x,  T ) = m g ( X ,  T) - -  
T~ Ohg (T) drag(x, ; Q(x, T ) =  - '  hg (T); 

OT 8x 

c(T) h (T), ~ (x) and f.(T), i = i, N are known functions. We also consider as given the 
' g l 

parameters describing the thermal breakdown processes in the composite material. 

In solving inverse heat-conduction coefficient problems, a very efficient approach is 
one based on considering the problem in an extremal formulation using parameterization of 
the desired functions and applying the iterative methods of successive approximations [3-6]. 
Here as the target function we use the rms deviation of the theoretical temperatures (accord- 
ing to the given mathematical model) at the sensor location points from the measured values: 

N--I "~m 
l (xi ,  x, g,(T))= .~ j' [T(x .  "~, X(T))-- t i  (x)lZd~. 

i=2  0 

(9) 

Thus, we require to determine the functions %(T) and T(x, T) from the condition that the 
functional of Eq. (9) have a minimum with the constraints of Eqs. (1)-(8). This approach was 
considered in [6], as applied to a composite material. 

As a result of parameterization of the desired function ~(T), the original nonlinear 
variational problem reduces to the problem of finding the vector of the parameters from the 
condition of a minimum of the quality criterion of Eq. (9). For the parametrization, it is 
convenient to represent the functions in terms of cubic B-splines [7]. We shall approximate 
the function %(T) in the form 

M,+l 

~, (T) = ~A~ ~,jBs (T), 
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(10) 

where %'3 are the desired parameters; Bj(T) are cubic B-splines, constructed on the mesh 

= {Tmi n + kH, k =--3, M+ 3i H= (Tm~--Tmln)/M}; [Tmin, Tmax] is the region of definition 

of the function %(T); and M is the number of sections of the spline approximation. 

In constructing the numerical iteration algorithms for solving inverse problems it is 
convenient to use methods of minimizing the functional (9) characterized by an efficient 
start of the iterative process from some "deep" initial approximation, and by a reduced rate 
of convergence when approaching the minimum [8]. These requirements are met by gradient 
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search methods, in particular the method of conjugate gradients [9]. 
approximations are calculated from the formula 
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where 
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a s is the depth of the search; and s is the iteration number. 

The gradient of the functional is calculated using the solution of the boundary problem 
conjugate to the original problem of Eqs. (1)-(8), on the basis of analysis of the necessary 
conditions for the functional of Eq. (9) to be stationary [i0]. In this case the conjugate 
boundary problem has the form 
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Taking account of approximation (i0) and using the solution of the problem of Eqs. (12)- 
(17), we can obtain the following relations for the components of the vector of the gradient 
of the target functional: 
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It is efficient, from the viewpoint of reducing expenditure of machine time, to use a 
linear estimate of the search pitch a. In this case the value of ~ can be determined from 
the formula (see [6]) 
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It is expedient to use the numerical methods of [ii] to solve the boundary prob- 
lems of (i)-(8), (12)-(17) and (20)-(25). 

We shall conduct a further analysis of the accuracy of the algorithm described under 
conditions where the minimum experimental information is given, assuming that the temperature 
measurements are made at the boundaries and at one internal point of the test specimen. It 
was shown in [12] that the problem of recovering one coefficient in the homogeneous nonuni- 
form heat-conduction equation from this information has a unique solution. The practical 
investigation made in [6] has confirmed the hypothesis that there is a unique solution to the 
more complex inverse problem (1)-(9). In solving an incorrectly posed problem it is important 
to stop the iteration process. In the case where exact values of the "input" temperatures 
are known, to cut short the iterative process of searching for X(T) the condition 

max labs (T~ (x 2, x, X~)) - -  [~ (~))1 ~-~ er 
T 

is used, where e T > 0 is the error in calculating the temperature profile at the points where 

thermocouples are installed. 

In the case when the "input" temperatures are given with an error, the time for stopping 
the iteration process is determined by the condition that the functional of Eq. (9) that is 
minimized be equal to the integral error of the temperature measurement 

Tyt~ 
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where 62 = S ~ is the estimate of the generalized error of the input data; o2(T) is the 

0 

rms deviation of the temperatures at the point x= at time T. 

Here it is assumed that the parameters of the different mesh in the numerical solution 
of the problem of Eqs. (1)-(8) are chosen so that the errors can be neglected in comparison 
with the quantity 52 �9 Round-off errors are also not taken into account in the computer 

calculation process. 

It was shown in [4, 13] that iteration algorithms like that described above with the 
stop condition of Eq. (26) in the linear case are regularizing, and can be used to solve in- 
correct problems. The experience of using iterative algorithms to solve for the coefficients 
of inverse problems [3-6] has shown them to have high efficiency even in nonlinear cases. 

The modeling was done as follows. The exact data on the "measured" temperatures of 
Eq. (8) at various distances from the heated surface were obtained by solving the direct 
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problem of Eqs. (1)-(7) with given thermal boundary conditions of the second kind. The 
values of all the coefficients and parameters describing the heat- and mass-transfer process 
in the model were considered known, and corresponded to a typical semiorganic polymer material. 
The computed dependences of temperature on time at an internal point of the specimen with 
given coordinate x2 and at its boundaries were then used as input data in solving the problem 
to determine the "unknown" dependence X(T). The initial approximation X(1)(T) was assigned 
arbitrarily. 

To solve the inverse problem in the perturbed input data the errors in the experimental 
function f2(r) were modeled according to a uniform distribution law of probability density of 
perturbations with an error not exceeding 3% of the maximum value of the temperature. With 
this kind of approach, one can model an experiment in which the temperature is measured with 
the help of thermocouples and one immediately compares the known dependence X*(T) with the 
value recovered from solving the inverse problem in the various computational cases. 

As the exact value of the recovered dependence of the thermal conductivity on the tem- 
perature we considered the polynomial 

~.* (T)~-6,7-10-VT z -  6,08.10-~T + 0,217 "[m--~g K] " 

The average relative error in the recovered function X(T) from solving the inverse prob- 
lem was estimated from the formula 

e~ = - -  %~ abs [(;~ (Tk) - -  ~* (Tk))/~* (Tk)], (27) 

where X*, X are the exact value of the desired function and the value recovered from solving 
the inverse problem, respectively; I is the number of nodes in the interval [Tmin, Tmax] at 

which one compares the values X and X*. The number of sections of the spline approximation 
to the desired function was taken as three. 

Figure 1 shows the dependence X(T) recovered using the above algorithm to solve the in- 
verse problem, for exact and perturbed values of the input temperature. For the case of 
perturbed input data Fig. 2 shows values of the temperatures T(x2, T) recovered from solution 
of the inverse problem. We note that in solving the inverse problem with exact input data 
the difference in the recovered values of temperature did not exceed 0.3~ The dimensionless 
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Fig. i. Recovery of the dependenc e X(T) at the 
exact values (a) and the perturbed values (b) of 
the input data for various values of the coordi- 
nates of thermocouple location (x2-103 m): i) x2 
= 0.7; 2) 1.4; 3) 2.1; 4) 4.2; 5) exact values; 
6) values recovered from solving the inverse 
problem; 7) initial approximation; X = 0.149 
W/(m~ To = 303 K, Tma x = 780 K. max 
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Fig. 2. Temperatures at the thermocouple location points (x.103 
m): I) x2 = 0.7; 2) 1.4; 3) 2.1; 4) 4.2; 5) exact values; 6) 
perturbed values; To = 303 K, Tma x = 780 K. 

Fig. 3. The minimum relative error in recovering the thermal 
conductivity: i) exact; 2) perturbed input data. x is in m. 

coordinates in Figs. i and 2 are T=(T--To)/(Tmax--To),~=%/%max. 

From the results of the mathematical modeling one can analyze the sensitivity of the 
algorithm for solving the inverse problem for a variation in the coordinates of thermo- 
couple location (Fig. 3). It should be noted that analogous results were obtained also for 
the uniform heat-conduction equation. 

The analysis showed that for successful use of the methods of inverse problems to deter- 
mine the thermophysical characteristics of actual materials one must first analyze questions 
associated both with formulating the problem and setting up the solution algorithms, and 
with the choice of conditions of the experiment, to ensure reliability of the results ob- 
tained and efficient use of the proposed algorithms. 

NOTATION 

c, volume heat capacity; %, thermal conductivity; mg, specific mass flow rate; hg, 

enthalpy of the gas phase of thermal breakdown products; T, temperature; x, three-dimensional 

, right-hand boundary value of the time interval; fi(T), input tem- coordinate; T time; Tm, 

peratures; z, concentration of the decomposable component; A, preexponential factor; n, order 

of the breakdown reaction; E/R, activation energy; kT, limiting value of the coke number; p0, 

density ~f the original material; T temperature at the start of thermal breakdown; b right- 
r' 

hand boundary value of the three-dimensional interval; I, functional; ~, temperature incre- 

ment; 4, conjugate variable; i, three-dimensional subscript; Tmin, minimum value of tempera- 

ture; Tmax, maximum value of temperature; %max' maximum value of thermal conductivity. 

io 
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RECONSTRUCTING THE EFFECTIVE COEFFICIENT OF THERMAL 

CONDUCTIVITY OF ASBESTOS--TEXTOLITE FROM THE 

SOLUTION OF THE INVERSE PROBLEM 

E. A. Artyukhin, V. E. Killikh, 
and A. S. Okhapkin UDC 536.212.3 

The article examines the practical application of the algorithm for solving inverse 
problems in processing experimental data. 

The intense development of the theory and the increasing range of application of the 
methods of solving inverse problems of heat exchange [i] led to their widespread use in 
thermophysical research [2-5]. Such an approach in the investigation Of the thermophysical 
characteristics of high-temperature composite materials under nonsteady conditions solves 
the problem of modeling the structure of the material and the nature of how internal pro- 
cesses pro=eed [6], and moreover, it makes it possible to determine these characteristics 
for mathematical models in which their application is assumed. 

Sometimes the problem of determining the effective values of thermophysical character- 
istics may be examined; the use of these characteristics makes it possible to generalize in 
fairly simple form the results of experimental investigations. Furthermore, such charac- 
teristics may be used for calculating temperature fields of coatings in the range of change 
of external conditions that is of interest to the researcher. 

The principal object of the present work consists in investigating the possibility of 
the practical application of the methods of inverse problems for determining the thermo- 
physical characteristics of composite materials under nonsteady conditions. 

We analyze the errors connected with thermocouple temperature measurements in high- 
temperature decomposing material, and the accuracy of the obtained results is evaluated. 
For processing the experimental data we used the algorithm for solving inverse coefficient 
problems of heat conduction explained in [2]. 

We analyzed a model of an unbounded flat plate in which at four points thermocouple 
measurements were carried out. 

The temperature measurements at the outer points of the examined region were used as 
thermal boundary conditions. The input data for solving the inverse problem were the 
temperature measurements at the inner points of the region. 
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